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Three-center nuclear attraction and four-center two-electron Coulomb integrals
over Slater-type orbitals are required forab initio and density functional theory
(DFT) molecular structure calculations. They occur in many millions of terms, even
for small molecules and require rapid and accurate evaluation. TheB functions are
used as a basis set of atomic orbitals. These functions are well adapted to the Fourier
transform method that allowed analytical expressions for the integrals of interest to
be developed. Rapid and accurate evaluation of these analytical expressions is now
made possible by applying theHD andHD̄ methods for accelerating the convergence
of the semi-infinite oscillatory integrals. The convergence properties of the new
methods are analysed. The numerical results section shows the high predetermined
accuracy and the substantial gain in the calculation times obtained using the new
methods. c© 2000 Academic Press
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1. INTRODUCTION

In numerical analysis, in applied mathematics, and in physics, one must often deal with
infinite series and infinite or semi-infinite integrals to represent the solutions of many
problems. In practice, these series and integrals have a very poor convergence. This presents
severe numerical and computational difficulties. Therefore, convergence accelerators and
nonlinear transformation methods for accelerating the convergence of infinite series and
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integrals have been studied for many years and applied to various situations. They are based
on the idea of extrapolation. Their utility for enhancing and even inducing convergence has
been amply demonstrated by Shanks [1]. They form the basis of new methods for solving
various problems which were unsolvable otherwise and have many applications as well
[2, 3].

Three-center nuclear attraction and four-center two-electron Coulomb integrals are the
rate limiting step ofab initio and density functional theory (DFT) molecular structure
calculations. These integrals contribute to the total energy of the molecule which is required
to a precision sufficient for small fractional changes to be evaluated reliably. In practice, the
precision threshold for the total energy is of order 10−3 atomic units and therefore individual
integrals must be accurate to 10−8–10−10 au.

The choice of a basis set for the expansion of atomic orbitals is of great importance in
ab initio calculations. A good atomic orbital basis should decay exponentially for large
distances [4–8] and should also satisfy Kato’s conditions for analytical solutions of the
appropriate Schr¨odinger equation [9].

The most popular functions used inab initio calculations are the so-called gaussian-type
orbitals (GTOs) [10]. With GTOs the numerous molecular integrals can be evaluated rather
easily. Unfortunately, these GTO basis functions fail to satisfy the above mathematical
conditions for atomic electronic distributions.

Exponential-type orbitals (ETOs) are better suited than GTOs to represent electron wave
functions near the nucleus and at long range, provided that multicenter integrals using such
functions could be computed efficiently. The ETOs show the same behavior as the exact
solutions of atomic or molecular Schr¨odinger equations satisfying Kato’s conditions [11].

Among the ETOs, slater-type functions (STFs) [12, 13] have a dominating position, be-
cause their analytical expression is very simple; however, the use of STFs has been prevented
by the fact that their multicenter integrals are extremely difficult to evaluate for polyatomic
molecules, particularly bielectronic terms. Various studies have focused on the use ofB
functions proposed by Shavitt [14] and introduced by Filter and Steinborn [15, 16]. These
functions are analytically more complicated than STFs but they have much more appealing
properties applicable to multicenter integral problems. They possess a relatively simple ad-
dition theorem [15, 17–19] and extremely compact convolution integrals [17, 20], they can
be expressed as finite linear combinations of STFs [16, 17], and their Fourier transforms are
exceptionally simple [18, 21]. TheB functions are well adapted to the Fourier transform
method [22–37], which led to analytical expressions for multicenter bielectronic integrals
overB functions. These analytical expressions present severe numerical and computational
difficulties due to the presence of semi-infinite very oscillatory integrals.

The molecular integrals under consideration are to be evaluated via a numerical quadrature
of integral representations in terms of nonphysical integration variables. These integral
representations were derived with the help of the Fourier transformation method [27, 31].

It is well known that the numerical integration of oscillatory integrands is beset with
difficulties, especially when the oscillatory part is a (spherical) Bessel function and not a
simple trigonometric function [38, 39]. The semi-infinite integrals can be transformed into
infinite series of integrals of alternating sign. These series are slowly convergent, and this is
why their use is prohibitively long for sufficient accuracy. The epsilon algorithm of Wynn
[40] or Levin’s u transform [41] accelerates the convergence of infinite series. In the case
of the semi-infinite integrals involved in the analytical expressions of molecular integrals,
however, the calculation times for a sufficient accuracy are still long, especially for large
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values ofλ andv, since the zeros ofjλ(vx) become closer, and fors close to 0 or 1, since
the exponential decreasing partk̂ν of the integrands becomes a constant. Thus the rapid
oscillations of jλ(vx) cannot be damped and suppressed, and new numerical integration
techniques are required.

In previous work [42, 43], we showed that all the conditions of applicability of the
nonlinearD andD̄ transformations [44, 45] are satisfied by the integrands of semi-infinite
integrals involved in the analytical expressions of the three-center nuclear attraction and the
four-center two-electron Coulomb integrals.

TheD andD̄ transformations in a sense combine theG transformation [46], the confluent
ε algorithm [47], and theP transformation [48]. To apply these two transformations to
accelerating the convergence of the semiinfinite integral

∫ +∞
0 f (x) dx, the integrandf (x)

is required to satisfy a linear differential equation of orderm with coefficients having
asymptotic expansions in inverse powers of their argumentx asx→+∞.

We demonstrated [42, 43] that the integrands of interest satisfy linear differential equa-
tions of order 4 in the case of three-center nuclear attraction integrals and of order 6 in the
case of four-center two-electron Coulomb integrals, of the form required to apply theD
and D̄ transformations. The results obtained were satisfactory. Unfortunately, the calcula-
tions of the approximations using these two transformations present severe numerical and
computational difficulties, in particular, for the four-center two-electron Coulomb integrals.

In [49, 50], we showed that the order of the linear differential equations satisfied by the
integrands of the formf (x) = g(x) jλ(x), where jλ(x) is the spherical Bessel function of
orderλ, whereg(x) is of the formh(x)eφ(x), whereφ(x) is such thatφ(x) ∼ Pk(x) as
x→+∞, and wherePk(x) is a real polynomial inx of degreek, can be reduced to two,
using some properties of reduced Bessel and spherical Bessel functions. This approach is
shown to be applicable to the integrands of question.

The present work focused on the generalization of the method leading to the reduction of
the order of linear differential equations required to applyD andD̄ to two, keeping all the
other conditions satisfied. This result led to an extension of the range of functions satisfying
second-order linear differential equations with coefficients having asymptotic expansions
in inverse powers of their arguments and satisfying all the conditions of the applicability of
theD andD̄ transformations. Great simplifications in evaluating the semi-infinite integrals
are obtained using the approach presented in this work, leading to new methods that we
calledHD andHD̄.

The convergence properties of theHD̄ were analysed and they showed that from the
numerical point of view the new approach corresponds to the most ideal situation.

The numerical results section shows the substantial simplification and the gain in the
calculation times obtained using the new method compared with other alternatives.

The symbolic programming language Axiom [51] is used to confirm the analytical de-
velopments and to provide exact values of the semi-infinite integrals.

2. GENERAL DEFINITIONS AND PROPERTIES

We definedA(γ ) for someγ as the set of infinitely differentiable functionsp(x), which
have asymptotic expansions in inverse powers ofx asx→+∞, of the form

p(x) ∼ xγ
(

a0+ a1

x
+ a2

x2
+ · · ·

)
, (1)
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and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in Eq. (1) formally term by term.

For γ ∈ R, we denote byÃ(γ ) the set of functionsf (x) such that f ∈ A(γ ) and
limx→+∞ x−γ f (x) 6= 0. Thus, f ∈ Ã(γ ) has an asymptotic expansion in inverse powers
of x asx→+∞ of the form given by Eq. (1) witha0 6= 0.

We defined the functionalα0( f ) by α0( f ) = a0 6= 0 in the case wheref ∈ Ã(γ ) for a
certainγ .

We definedeÃ(γ ) for someγ as the set of functionsg(x) such that

g(x) = ef (x) where f ∈ Ã(γ ).

The reduced Bessel functionk̂n−1/2(ζ r ) is defined by [14, 15]

k̂n− 1
2
(ζ r ) = e−ζ r

ζ r

n∑
j=1

(2n− j − 1)!

( j − 1)!(n− j )!
2 j−n(ζ r ) j . (2)

The spherical Bessel functionjl (x) for orderl ∈ N0 is defined by [52]

jl (x) = (−1)l xl

(
d

x dx

)l(sin(x)

x

)
. (3)

The spherical Bessel function is also defined by [52]

jl (x) = [π/(2x)]1/2Jl+1/2(x), (4)

whereJl+1/2(x) stands for the Bessel function of the first kind [52].
jl (x) and its first derivativej ′l (x) satisfy the recurrence relations [52]{

x jl−1(x)+ x jl+1(x) = (2l + 1) jl (x)

l j l−1(x)− (l + 1) jl+1(x) = (2l + 1) j ′l (x),
(5)

where

j0(x) = sinx

x
and j1(x) = sinx

x2
− cosx

x
. (6)

The zeros of the spherical Bessel functionjl (x) for l ≥ 1 are identical to the zerosj n
l+1/2,

n ≥ 1 of Jl+1/2(x) because of the relation Eq. (4).
For the following, we setj n

l ,v = j n
l+1/2/v, n = 1, 2, . . . , which are the successive zeros

of jl (vx). j 0
l+1/2 and j 0

l ,v are assumed to be 0.
The surface spherical harmonicYm

l (θ, ϕ) is defined explicitly using the Condon and
Shortley phase convention as [53]

Ym
l (θ, ϕ) = i m+|m|

[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
] 1

2

P|m|l (cosθ)eimϕ. (7)

Pm
l (x) is the associated Legendre polynomial ofl th degree andmth order:

Pm
l (x) = (1− x2)m/2

(
d

dx

)l+m[
(x2− 1)l

2l l !

]
. (8)
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The Rayleigh expansion of the plane wave functions is defined by [54]

e±i Ep·Er =
+∞∑
l=0

l∑
m=−l

4π(±i )l jl (| Ep||Er |)Ym
l (θEr , ϕEr )

[
Ym

l (θ Ep, ϕ Ep)
]∗
. (9)

The Fourier integral representation of the Coulomb operator1
|Er − ER1| is given by [55]

1

|Er − ER1|
= 1

2π2

∫
Ek

e−i Ek·(Er− ER1)

k2
dEk. (10)

The Gaunt coefficients are defined as [56–62]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0

[
Ym1

l1 (θ, ϕ)
]∗

Ym2
l2 (θ, ϕ)Y

m3
l3 (θ, ϕ) sinθ dθ dϕ.

These coefficients linearize the product of two spherical harmonics,

[
Ym1

l1 (θ, ϕ)
]∗

Ym2
l2 (θ, ϕ) =

lmax∑
l=lmin,2

〈l2m2|l1m1|lm2−m1〉Ym2−m1
l (θ, ϕ), (11)

where the subscriptl = lmin,2 in the summation symbol implies that the summation indexl
runs in steps of 2 fromlmin to lmax. The constantslmin andlmax are given by [59]

lmax= l1+ l2 (12)

lmin =
{

max(|l1− l2|, |m2−m1|), if l1+ l2+max(|l1− l2|, |m2−m1|) is even

max(|l1− l2|, |m2−m1|)+ 1, if l1+ l2+max(|l1− l2|, |m2−m1|) is odd.

(13)

The Slater-type orbitals are defined in normalized form according to the relationship
[12, 13]

χm
n,1(ζ Er ) = N(n, ζ )r n−1e−ζ r Ym

l (θEr , ϕEr ), (14)

wheren = 1, 2, . . . ,0≤ l ≤ n− 1, and−l ≤ m≤ l . N(n, ζ ) stands for the normalisation
factor defined by

N(n, ζ ) = ζ−n+1[(2ζ )2n+1/(2n)!] 1/2. (15)

The B functions are defined as [15, 16]

Bm
n,l (ζ Er ) =

(ζ r )l

2n+l (n+ l )!
k̂n− 1

2
(ζ r )Ym

l (θEr , ϕEr ). (16)

The B function can only be used as an L.C.A.O. basis functions ifn ∈ N holds. For
−l ≤ n ≤ 0, a B function is singular at the origin, and ifn = −l − ν with ν ∈ N holds,
then aB function is no longer a function in the sense of classical analysis but a derivation
of the three-dimensional Dirac delta function [63].
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The Slater-type orbitals can be expressed as finite linear combinations ofB functions
[16],

χm
n,l (ζ Er ) =

n−l∑
p= p̃

(−1)n−l−p(n− l )!2l+p(l + p)!

(2p− n− l )!(2n− 2l − 2p)!!
Bm

p,l (ζ Er ), (17)

where

p̃ =
{
(n− l )/2 if n− l even

(n− l + 1)/2 if n− l odd
(18)

and where the double factorial is defined by
(2k)!! = 2× 4× 6× · · · × (2k) = 2kk!

(2k+ 1)!! = 1× 3× 5× · · · × (2k+ 1) = (2k+1)!
2kk! .

0!! = 1

The Fourier transform̄Bm
n,l (ζ, Ep) of Bm

n,l (ζ Er ) is given by [18, 21]

B̄m
n,l (ζ, Ep) =

√
2

π
ζ 2n+l−1 (−i |p|)l

(ζ 2+ |p|2)n+l+1
Ym

l (θ Ep, ϕ Ep). (19)

3. THREE-CENTER NUCLEAR ATTRACTION AND FOUR-CENTER TWO-ELECTRON

COULOMB INTEGRALS OVER B FUNCTIONS

The three-center nuclear attraction integral is

In2,l2,m2
n1,l1,m1

=
∫
ER

[
Bm1

n1,l1(ζ1( ER− EOA))
]∗ 1

| ER− EOC|
Bm2

n2,l2[ζ2( ER− EOB)] d ER. (20)

The four-center two-electron Coulomb integral is

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫
ER, ER′
[
Bm1

n1,l1(ζ1( ER− EOA))
]∗[

Bm3
n3,l3(ζ3( ER′ − EOC))

]∗
× 1

| ER− ER′|B
m2
n2,l2[ζ2( ER− EOB)]Bm4

n4,l4[ζ4( ER′ − EOD)] d ER d ER′. (21)

By substituting the integral representation of the Coulomb operator Eq. (10) in the above
equations, we can re-write these two integrals as

In2,l2,m2
n1,l1,m1

= 1

2π2

∫
ei Ex· ER1

x2

〈
Bm1

n1,l1(ζ1Er ′ )|e−i Ex·Er |Bm2
n2,l2[ζ2(Er − ER2)]

〉
Er dEx, (22)

whereEr = ER− EOA, ER1 = EOC and ER2 = EAB, and

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
ei Ex· ER41

x2

〈
Bm1

n1,l1(ζ1Er ′ )|e−i Ex·Er |Bm2
n2,l2[ζ2(Er − ER21)]

〉
Er

× 〈Bm4
n4,l4(ζ4Er ′ )|e−i Ex·Er ′|Bm3

n3,l3[ζ3(Er ′ − ER34)]
〉∗
Er ′ dEx, (23)
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where ER1 = EOA, ER2 = EOB, ER3 = EOC, ER4 = EOD, Er = ER− ER1, Er ′ = ER′ − ER4, and ERi j =
ERi − ERj .

By applying the Fourier transform method [27, 31] to the terms

〈
Bmi

ni ,l i (ζi Er ′)|e−i Ex·Er |Bmj

n j ,l j
[ζ j (Er − ER)]

〉
Er

involved in the Eqs. (22) and (23), one can obtain analytical expressions for these integrals
given by [27, 31]

In2,l2,m2
n1,l1,m1

= 8(4π)2(2l1+ 1)!!(2l2+ 1)!!

× (n1+ l1+ n2+ l2+ 1)!

(n1+ l1)!(n2+ l2)!
ζ

2n1+l1−1
1 ζ

2n2+l2−1
2

×
l1∑

l ′1=0

l ′1∑
m′1=−l ′1

(i )l1+l ′1(−1)l1
〈l1m1|l ′1m′1|l1− l ′1m1−m′1〉
(2l ′1+ 1)!![2(l1− l ′1)+ 1]!!

×
l2∑

l ′2=0

l ′2∑
m′2=−l ′2

(i )l2+l ′2(−1)l2+l ′2
〈l2m2|l ′2m′2|l2− l ′2m2−m′2〉
(2l ′2+ 1)!![2(l2− l ′2)+ 1]!!

×
l ′max∑

l=l ′min,2

〈l ′2m′2|l ′1m′1|lm′2−m′1〉Rl
2Y

m′2−m′1
l

(
θ ER2
, ϕ ER2

)

×
l ′′max∑

λ=l ′′min,2

(−i )λ〈l2− l ′2m2−m′2|l1− l ′1m1−m′1|λµ〉

×
1l∑
j=0

(
1l

j

)
(−1) j

2n1+n2+l1+l2− j+1(n1+ n2+ l1+ l2− j + 1)!

×
∫ 1

s=0
sn2+l1+l2−l ′1(1− s)n1+l1+l2−l ′2Yµ

λ (θEv, ϕEv)

×
[ ∫ +∞

x=0
xnx

k̂ν [R2γ (s, x)]

[γ (s, x)]nγ
jλ(vx) dx

]
ds, (24)

where

[γ (s, x)]2 = (1− s)ζ 2
1 + sζ 2

2 + s(1− s)x2

Ev = (1− s) ER2− ER1, v = ‖Ev‖, R2 = ‖ ER2‖
nγ = 2(n1+ l1+ n2+ l2)− (l ′1+ l ′2)− l + 1

ν = n1+ n2+ l1+ l2− l − j + 1

2
µ = (m2−m′2)− (m1−m′1)

nx = l1− l ′1+ l2− l ′2
1l = [(l ′1+ l ′2− l )/2]
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J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)5(2l1+ 1)!!(2l2+ 1)!!
(n1+ l1+ n2+ l2+ 1)!

(n1+ l1)!(n2+ l2)!

× (−1)l1+l2(2l3+ 1)!!(2l4+ 1)!!
(n3+ l3+ n4+ l4+ 1)!

(n3+ l3)!(n4+ l4)!

× ζ 2n1+l1−1
1 ζ

2n2+l2−1
2

× ζ 2n3+l3−1
3 ζ

2n4+l4−1
4

l1∑
l ′1=0

µ12∑
m′1=µ11

i l1+l ′1
〈l1m1|l ′1m′1|l1− l ′1m1−m′1〉
(2l ′1+ 1)!![2(l1− l ′1)+ 1]!!

×
l2∑

l ′2=0

µ22∑
m′2=µ21

i l2+l ′2(−1)l
′
2
〈l2m2|l ′2m′2|l2− l ′2m2−m′2〉
(2l ′2+ 1)!![2(l2− l ′2)+ 1]!!

×
l3∑

l ′3=0

µ32∑
m′1=µ31

i l3+l ′3
〈l3m3|l ′3m′3|l3− l ′3m3−m′3〉
(2l ′3+ 1)!![2(l3− l ′3)+ 1]!!

×
l4∑

l ′4=0

µ42∑
m′4=µ41

i l4+l ′4(−1)l
′
4
〈l4m4|l ′4m′4|l4− l ′4m4−m′4〉
(2l ′4+ 1)!![2(l4− l ′4)+ 1]!!

×
l1,max∑

l=l1,min,2

〈l ′2m′2|l ′1m′1|lm′2−m′1〉Rl
21Y

m′2−m′1
l

(
θ ER21

, ϕ ER21

)

×
l ′1,max∑

l12=l ′1,min,2

〈l2− l ′2m2−m′2|l1− l ′1m1−m′1|l12m21〉

×
l2,max∑

l ′=l2,min,2

〈l ′4m′4|l ′3m′3|l ′m′4−m′3〉Rl ′
34Y

m′4−m′3
l ′

(
θ ER34

, ϕ ER34

)

×
l ′2,max∑

l34=l ′2,min,2

〈l4− l ′4m4−m′4|l3− l ′3m3−m′3|l34m4−m′4− (m3−m′3)〉

×
l ′′max∑

λ=l ′′min,2

(−i )λ〈l12m21|l34m4−m′4− (m3−m′3)|λµ〉

×
1l12∑
j12=0

1l34∑
j34=0

(
1l12

j12

)(
1l34

j34

)
(−1) j12+ j34

2ν1+ν2+l+l ′+1
(
ν1+ 1

2 + l
)
!
(
ν2+ 1

2 + l ′
)
!

×
∫ 1

s=0

sn2+l2+l1(1− s)n1+l1+l2

sl ′1(1− s)l
′
2

∫ 1

t=0

tn4+l4+l3(1− t)n3+l3+l4

t l ′3(1− t)l
′
4

Ym2−µ
λ (θEv, ϕEv)

×
[∫ +∞

x=0
xnx

k̂ν1[R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂ν2[R34γ34(t, x)]

[γ34(t, x)]nγ34
jλ(vx) dx

]
dt ds, (25)

where

µ = (m2−m′2)− (m1−m′1)+ (m4−m′4)− (m3−m′3)

µ1i = max(−l ′i ,mi − l i + l ′i ), for i = 1, 2, 3, 4
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µ2i = min(l i ,mi + l i − l ′i ), for i = 1, 2, 3, 4

[γ12(s, x)]2 = (1− s)ζ 2
1 + sζ 2

2 + s(1− s)x2

[γ34(t, x)]2 = (1− t)ζ 2
3 + tζ 2

4 + t (1− t)x2

Ev = (1− s) ER21+ (1− t) ER43− ER41

ν1 = n1+ n2+ l1+ l2− l − j12+ 1

2

ν2 = n3+ n4+ l3+ l4− l ′ − j34+ 1

2

1l12 = l ′1+ l ′2− l

2
, 1l34 = l ′3+ l ′4− 1′

2

nγ12 = 2(n1+ l1+ n2+ l2)− (l ′1+ l ′2)− l + 1

nγ34 = 2(n3+ l3+ n4+ l4)− (l ′3+ l ′4)− l ′ + 1.

nx = l1− l ′1+ l2− l ′2+ l3− l ′3+ l4− l ′4

m21 = m2−m′2− (m1−m′1).

The constantslmax andlmin are given by Eqs. (12) and (13).
The numerical evaluation of the analytical expressions obtained has been proven to be very

difficult. This is due to the presence of the semi-infinite integrals, which will be referred
to asĨ(s) and J̃ (s, t) respectively, and whose integrands oscillate rapidly in particular
for large values ofv andλ. Different approaches were used [64–67], namely the Gauss–
Laguerre quadrature, the epsilon algorithm of Wynn [40], and Levin’su transform [41],
which accelerate the convergence of the semi-infinite integrals after transforming them into
infinite series.

In previous work [43, 50], we have shown that these methods are inefficient in the
evaluation of these kinds of semi-infinite integrals especially in the regions wheres andt
are close to 0 or 1 where the oscillations of the integrands become very rapid.

It is shown that the integrands of interest satisfied all the conditions of the applicability
of the nonlinearD and D̄ transformations [42, 43]. These transformations are efficient in
accelerating the convergence of semi-infinite oscillatory integralsS= ∫ +∞0 f (t) dt whose
integrandsf (t) satisfy linear differential equations of the form [44]

f (t) =
m∑

k=1

pk(t) f (k)(t),

where the coefficientspk, for k = 1, 2, . . . ,m should satisfy the following conditions [44]:

1. pk are inA(i k), wherei k ≤ k, for k = 1, 2, . . . ,m.
2. limx→+∞ p(i−1)

k (x) f (k−i )(x) = 0, for k = i, i + 1, . . . ,m; i = 1, . . . ,m.
3. ∀l ≥ −1,

∑m
k=1 l (l − 1) · · · (l − k+ 1)pk,0 6= 1; pk,0 = limx→+∞ x−k pk(x).

Under the above conditions, one can obtain an asymptotic expansion for
∫ +∞

x f (t) dt as
x→+∞, which is given by [44]∫ +∞

x
f (t) dt ∼

m−1∑
k=0

f (k)(x)x jk

(
β0,k + β1,k

x
+ β2,k

x2
+ · · ·

)
, (26)
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where

jk ≤ max(i k + 1, i k+2− 1), . . . , im −m+ k+ 1), k = 0, 1, . . . ,m− 1.

The approximation ofSusing the nonlinearD transformation, satisfies theN = 1+mn
equations given by [44]

D(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=0

f (k)(xl )x
σk
l

n−1∑
i=0

β̄ i,k

xi
l

, l = 0, 1, . . . ,mn, (27)

whereD(m)
n and theβ̄ i,k, for k = 0, . . . ,m− 1; i = 0, 1, . . . ,n− 1 are theN = mn+ 1

unknowns of the linear system.σk is the minimum ofk+ 1 andsk, wheresk is the largest
of the integerss for which limx→+∞ xs f (k)(x) = 0. Thexl for l = 0, 1, . . . ,mn are such
thatx0 < x1 < · · · and liml→+∞ xl = +∞ [45].

Theβ̄ i,k for k = 0, . . . ,m− 1 andi = 0, 1, . . . ,n− 1 do not have to be identical toβi,k

in Eq. (26) since the asymptotic series in Eq. (26) are usually infinite [44].
The order of the above linear system can be reduced by choosingxl , l = 0, 1, . . . to be

the successive zeros off (x). In this case the Eq. (27) can be re-written [45]

D̄(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=1

f (k)(xl )x
σk
l

n−1∑
i=0

β̄ i,k

xi
l

, l = 0, 1, . . . , (m− 1)n, (28)

where D̄(m)
n and the β̄ i,k, for k = 1, . . . ,m− 1; i = 0, 1, . . . ,n− 1 are the N =

(m− 1)n+ 1 unknowns of the linear system.
In the case of the three-center nuclear attraction integral, the integrand, which will be

referred to asfa,s(x) of Ĩ(s), satisfies a fourth-order linear differential equation of the form
required to applyD and D̄ [42]. For the four-center two-electron Coulomb integral, the
integrand which will be referred to asfc,s,t (x) of J̃ (s, t), satisfies a sixth-order linear differ-
ential equation of the form required to applyD andD̄ [43]. The results obtained using these
transformations were satisfactory. Unfortunately, the calculations of the approximations
D̄(4)

n of Ĩ(s) and D̄(6)
n of J̃ (s, t) present severe numerical and computational difficulties

since we need to calculate the(m− 1) successive derivatives of the integrands and the linear
set of equations to solve is of order(m− 1)n+ 1, which can be very large if the values of
m andn are large. In [49], we demonstrated that the order of the differential equations sat-
isfied by the integrands of the formf (x) = g(x) jλ(x), whereg(x) = h(x)eφ(x) and where
h ∈ A(γ ) for someγ andφ(x) is such thatφ(x) ∼ Pk(x) asx→+∞ and wherePk(x) is
a real polynomial inx of degreek, can be reduced to two.

In this work, we presented a general method leading to the reduction of the orders
of linear differential equations to two, keeping all the conditions of the integrability and
the applicability of theD and D̄ transformations satisfied, using some useful calculation
techniques and some properties of the reduced Bessel functions and Poincar´e series [68].
This led to great simplifications in the application ofD andD̄ transformations.

4. THE HD AND HD̄ METHODS

Let us consider a functionf (x) of the form f (x) = g(x) jλ(x).
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THEOREM1. Let g(x) be a function in C2[0,+∞[ which is the set of twice continuously
differentiable functions. If g(x) is of the form

g(x) = h(x)eφ(x),

whereh ∈ Ã(γ ) andφ ∈ Ã(k), for someγ andk, then the functionf (x) = g(x) jλ(x)satisfies
a second-order linear differential equation given by

f (x) = p1(x) f ′(x)+ p2(x) f ′′(x), (29)

where {
p1(x) ∈ A(−1) and p2(x) ∈ A(0) if k = 0

p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2) if k 6= 0.

Proof. jλ(x) satisfies a second-order differential equation given by

jλ(x) = − 2x

x2− λ2− λ j ′λ(x)−
x2

x2− λ2− λ j ′′λ (x). (30)

By replacing in the above equationjλ(x) by f (x)
g(x) , one can obtain a linear differential

equation satisfied byf (x), which is given by Eq. (29), where

p1(x) =
2x2

(
h′(x)
h(x) + φ′

)
− 2x

w(x)
and p2(x) = −x2

w(x)
, (31)

and where

w(x)=−x2

[(
h′(x)
h(x)

+φ′
)′
−
(

h′(x)
h(x)

+φ′
)2]
− 2x

(
h′(x)
h(x)

+φ′
)
+ x2− λ2− λ. (32)

If k = 0 thenp1(x) ∈ A(−1) and p2(x) ∈ A(0).
If k 6= 0 thenp1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2).
We used the symbolic programming language Axiom to verify the above expressions and

to obtain the analytical expressions forα0(p1) andα0(p2), which are given by

α0(p1) = − α0(φ)

1+ α0(φ)2
and α0(p2) = − 1

1+ α0(φ)2
.

α0(p1) andα0(p2) are not equal to zero. Thus, the coefficientsp1(x) and p2(x) are in
Ã(i ) and Ã( j ) wherei and j are given in Theorem 1.

THEOREM 2. If g(x) is a function in C2[0,+∞[ and of the form g(x) = h(x)eφ(x),
where h∈ Ã(γ ), φ ∈ Ã(k) with k> 0 andα0(φ) < 0, then the function f(x) = g(x) jλ(x)
is integrable on[0,+∞[ and satisfies all the conditions of applicability of the nonlinear D
and D̄ transformations.

We shall now state lemmas that will be useful to prove Theorem 2.
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LEMMA 1. Let f(x) be in Ã(γ ) for someγ . Then:

1. If g ∈ Ã(δ), then f · g ∈ Ã(γ+δ) andα0( f g) = α0( f )α0(g).
2. ∀k ∈ R, xk f ∈ Ã(k+γ ), andα0(xk f ) = α0( f ).
3. The function c· f ∈ Ã(γ ) andα0(c f ) = cα0( f ) for all c 6= 0.
4. If g ∈ Ã(δ) andγ − δ > 0, then f+ g ∈ Ã(γ ) andα0( f + g) = α0( f ). If γ = δ and

α0( f ) 6= −α0(g), then the function f+ g ∈ Ã(γ ) andα0( f + g) = α0( f )+ α0(g).
5. Let m> 0 be an integer. Ifα0( f ) > 0, then the function fm ∈ Ã(mγ ) andα0( f m) =

α0( f )m.
6. The function1/ f ∈ Ã(−γ ) andα0(1/ f ) = 1/α0( f ).

The proof of Lemma 1 follows from the properties of Poincar´e series.

LEMMA 2. Let f ∈ Ã(k), where k is a positive integer and k6= 0. The function
k̂n+1/2( f (x)) ∈ Ã(nk)eÃ(k) and can be written in the form

k̂n+ 1
2
( f (x)) = f1(x)e

− f (x),

where f1 ∈ Ã(nk) (α0( f1) = (α0( f ))n 6= 0).
By using the analytical expression of the reduced Bessel function which is given by

Eq. (2), one can easily demonstrate Lemma 2.

Proof of Theorem 2. If k > 0 andα0(φ) < 0, then limx→+∞ φ(x) = −∞. The func-
tiong(x) ∈ C2[0,+∞[. From these arguments, it follows thatf (x) is integrable on [0,+∞[.

Using Theorem 1, we can show that the functionf (x) satisfies a second-order linear
differential equation with coefficientsp1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2).

The function f (x) is exponentially decreasing; thus

lim
x→+∞ p(i−1)

k (x) f (k−i )(x) = 0, k = i, 2; i = 1, 2.

Using the fact thatp1(x) ∈ A(−k+1), p2(x) ∈ A(−2k+2), andk > 0, it follows that

p1,0 = lim
x→+∞

1

x
p1(x) = 0, p2,0 = lim

x→+∞
1

x2
p2(x) = 0

and, therefore,

∀l ≥ −1,
2∑

k=1

l (l − 1) · · · (l − k+ 1)pk,0 = 0 6= 1.

The conditions of applicability ofD and D̄ for accelerating the convergence of∫ +∞
0 f (t) dt are now shown to be satisfied.

The approximationHD(2)
n of S= ∫ +∞0 f (t) dt using theD transformation is given by

HD(2)
n =

∫ xl

0
f (t) dt +

1∑
k=0

(g(xl ) jλ(xl ))
(k)xσk

l

n−1∑
i=0

β̄ i,k

xi
l

, l = 0, 1, . . . ,2n. (33)

Thexl , l = 0, 1, . . . ,2n are chosen to satisfyx0 < x1 < · · · < x2n and limn→+∞ xn = +∞.
HD(2)

n andβ̄ i,k, i = 0, 1, . . . ,n− 1, andk = 0, 1 are the(2n+ 1) unknowns of the above
linear system.
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By choosingxl = j l+1
λ+1/2 for l = 0, 1, . . . ,n, the above linear set of equations can be

re-written as

HD̄(2)
n =

∫ xl

0
f (t) dt + g(xl ) j ′λ(xl )x

σ1
l

n−1∑
i=0

β̄ i,1

xi
l

, l = 0, 1, . . . ,n. (34)

HD̄(2)
n andβ̄ i,1, i = 0, 1, . . . ,n− 1 are the(n+ 1) unknowns of the above linear system.

5. EVALUATION OF THREE-CENTER NUCLEAR ATTRACTION AND FOUR-CENTER

TWO-ELECTRON COULOMB INTEGRALS

The integrandfa,s(x) of Ĩ(s) is given by

fa,s(x) = ga(x) jλ(vx),

where

ga(x) = xnx
k̂n+1/2[R2γ (s, x)]

[γ (s, x)]nγ
.

Let the functionφ(x) be defined by

φ(x) = R2γ (s, x) = R2

√
(1− s)ζ 2

1 + sζ 2
2 + s(1− s)x2.

φ(x) is in Ã(1) (Lemma 1 form= 1
2).

From Lemma 1, it follows that 1
[γ (s,x)]nγ ∈ Ã(−nγ ).

By using Lemmas 1 and 2,ga(x) can be re-expressed in the form

ga(x) = g1(x)e
−φ(x), g1 ∈ Ã(n+nx−nγ ), and φ ∈ Ã(1) with α0(φ) > 0.

The integrandf j,s,t (x) of J̃ (s, t) is given by f j,s,t (x) = gj (x) jλ(vx), where

gj (x) = xnx
k̂n12+ 1

2
[R21γ12(s, x)]

[γ12(s, x)]nγ12

k̂n34+ 1
2
[R34γ34(t, x)]

[γ34(t, x)]νγ34
.

Let the functionsφ1(x) andφ2(x) be defined as

φ1 = R21γ (s, x) = R21

√
(1− s)ζ 2

1 + sζ 2
2 + s(1− s)x2 ∈ Ã(1)

φ2 = R34γ (t, x) = R34

√
(1− t)ζ 2

3 + tζ 2
4 + t (1− t)x2 ∈ Ã(1).

If we let φ j (x) = φ1(x)+ φ2(x), then from Lemma 1, it follows thatφ j (x) still in Ã(1)

andα0(φ j ) = α0(φ1)+ α0(φ2) 6= 0.
Using these arguments, we can re-write the functiongj (x) as

gj (x) = g3(x)e
−φ j (x),

{
g3 ∈ Ã(n12+n34+nx−nγ12−nγ34)

φ j ∈ Ã(1) with α0(φ j ) > 0.
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By using Theorem 1, we can show thatfa,s(x) and fc,s,t (x) satisfy second-order linear
differential equations of the form given by Eq. (29).

From Theorem 2, it follows thatfa,s(x) and fc,s,t (x) are integrable on [0,+∞[ and
satisfy all the conditions of applicability ofD andD̄.

fa,s(x) and fc,s,t (x) are exponentially decreasing; thusσk = k+ 1.
The approximationsHD̄(2)

n of Ĩ(s) andJ̃ (s, t) can be obtained by solving the linear set
of equations (34) withσ1 = 2 andxl = j l+1

λ,ν , l = 0, 1, . . . ,n.

6. CONVERGENCE PROPERTIES

Let us consider a functionf (x) integrable on [0,+∞[ satisfying all the conditions of
applicability of the nonlinearD transformation.

Let S= ∫ +∞0 f (t) dt, F(x) = ∫ x
0 f (t) dt and 8k(x) = xσk f (k)(x) for k = 0, 1, . . . ,

m− 1. The approximationD(m)
n of S satisfies the linear system of order(mn+ 1) given

by [44]

D(m)
n = F(xl )+

m−1∑
k=0

8k(xl )

n−1∑
i=0

β̄ i,k

xi
l

, l = 0, 1, . . . ,mn. (35)

COROLLARY 1 [69]. Let(γ0, γ1, . . . , γmn) be the first row of the inverse of the matrix of
the linear system Eq.(35). Then

∣∣S− D(m)
n

∣∣ ≤ ( mn∑
l=0

|γl |
)

o(n− j ), ∀ j > 0 asn→+∞. (36)

COROLLARY 2 [69]. If
∑mn

l=0 |γl | ≤ L <∞, then∣∣S− D(m)
n

∣∣ = o(n− j ), ∀ j > 0 asn→+∞. (37)

Using the fact that the first column of the matrix of the linear system Eq. (35) is the vector
(1, 1, . . . ,1)T (T denotes transpose), it follows that

∑mn
l=0 γl = 1 and therefore

∑mn
l=0 |γl | ≥

1.
Now, let us consider the linear system given by Eq. (34). We defined the function81(x) =

xσ1g(x) j ′λ(x).
Using the fact thatxl = j l+1

λ+1/2, l = 0, 1, . . . ,n are the successive zeros ofjλ(x), one can
easily show that

81(xl )81(xl+1) < 0, l = 0, 1, 2, . . . (38)

We defined the matrixM2 by

M2 =



F(x0)

81(x0)

F(x1)

81(x1)
· · · F(xn)

81(xn)

1 1 · · · 1

x−1
0 x−1

1 · · · x−1
n

...
...

...

x−n+1
0 x−n+1

1 · · · x−n+1
n


(39)
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and let K2 be the matrix obtained after replacing the first row ofM2 with the vector
( 1
81(x0)

, 1
81(x1)

, . . . 1
81(xn)

).

Using Cramer’s rule, one can expressHD̄(2)
n as

HD̄(2)
n =

det(M2)

det(K2)
=
∑n

l=0(−1)l [Vl/81(xl )]F(xl )∑n
l=0(−1)l [Vl/81(xl )]

, (40)

whereVl denotes the minor ofF(xl )/81(xl ) in M2 or of 1/81(xl ) in K2.
The minorsVl , l = 0, 1, . . . ,n are given by

V0 = V
(
x−1

1 , . . . , x−1
n

)
(41)

Vl = V
(
x−1

0 , . . . , x−1
l−1, x−1

l+1, . . . , x
−1
n−1

)
, l = 1, . . . ,n− 1 (42)

Vn = V
(
x−1

0 , . . . , x−1
n−1

)
, (43)

whereV(α0, α1, . . . , αn−1) is the Vandermonde determinant, which can be expressed by

V(α0, α1, . . . , αn−1) =
∏

0≤i< j≤n−1

(α j − αi ). (44)

Sinceα0 < α1 < · · · < αn−1, it follows thatV(α0, α1, . . . , αn−1) > 0.
Using the fact thatHD̄(2)

n =
∑n

l=0 γl F(xl ), we can obtain

γl = (−1)l [Vl/81(xl )]∑n
i=0(−1)i [Vi /81(xi )]

, 0≤ l ≤ n. (45)

As x0< x1< . . . , all Vl , for 0≤ l ≤ n have the same sign. Now by using Eq. (38), we
can easily show that(−1)l [Vl/81(xl )], for 0 ≤ l ≤ n have also the same sign. Therefore,
∀l , γl > 0 and consequently

n∑
l=0

|γl | =
n∑

l=0

γl = 1.

Corollary 3 becomes:

COROLLARY 2. |S− HD̄(2)
n | = o(n− j ), ∀ j > 0 as n→+∞.

The convergence properties of theHD̄ method are without any constraint. From the
numerical point of view, the situation in whichγl > 0, ∀l corresponds to the most ideal
one.

7. CONCLUSION

Analytical expressions can be obtained for the three-center nuclear attraction and the
four-center two-electron Coulomb integrals by choosing theB functions as a basis set of
atomic orbitals and applying the Fourier transform method. These analytical expressions
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TABLE I

Values ofĨ(s) Obtained with 20 Correct Decimals

s n1 n2 λ R1 ζ1 R2 ζ2 max Ĩ(s)

.005 1 1 0 6.50 2.00 2.50 1.00 201 .360140912983302D−02

.010 2 1 1 7.00 2.00 4.00 1.00 86 .481637530646112D−03

.010 2 2 2 6.50 2.00 1.00 1.00 470 .456117321707410D−02

.010 3 3 3 7.50 2.00 3.50 1.00 133 .181139626222770D−01

.010 4 4 4 8.50 2.00 3.50 1.00 167 .193274110480817D+00

.999 1 1 0 7.50 2.00 3.50 1.00 525 .161198710040904D+00

.990 2 1 1 4.50 2.00 1.50 1.00 222 .849175425774129D+00

.990 2 2 2 9.00 2.00 3.50 1.00 251 .271313806558930D+00

Note. nx = λ andnγ = 2ν.

involve semi-infinite very oscillatory integrals whose integrands are shown to be suitable
for the application of the nonlinearD andD̄ transformations.

This work presents a general approach, using some properties of reduced Bessel, spher-
ical Bessel functions, and Poincar´e series, for reducing the order of the linear differential
equations required to apply theD and D̄ to two. This led to a great simplification in the
application ofD andD̄ in calculating the approximations of semi-infinite oscillatory inte-
grals. The calculation of the successive derivatives is avoided and the order of the linear set
of equations to solve is reduced ton+ 1, wheren is the order of the accuracy. This new
approach is now shown to be applicable to the semi-infinite integrals of interest.

Obviously, this great increase of rapidity of the new methods, which we calledHD and
HD̄, is a key issue. In the molecular context, many millions of such integrals are required for
close range terms; therefore, rapidity is the primordial criterion when the precision has been
reached. The progress represented by theHD̄ approach is another useful step in developing
software for evaluating molecular integrals over Slater-type orbitals.

8. NUMERICAL RESULTS

The exact ofĨ(s) and J̃ (s, t) are computed to 20 exact decimals using the symbolic
programming language Axiom (Tables I, IV, VII, and X), after transforming the integrals

TABLE II

Evaluation of Ĩ(s) UsingHD̄(2)
n

s ν λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

.005 5/2 0 6.5 2.0 2.5 1.0 7 .3601409132D−02 .59D−11 0.04

.010 7/2 1 7.0 2.0 4.0 1.0 7 .4816375329D−03 .50D−11 0.04

.010 9/2 2 6.5 2.0 1.0 1.0 9 .4561174046D−02 .27D−11 0.06

.010 13/2 3 7.5 2.0 3.5 1.0 7 .1811388162D−01 .50D−08 0.04

.010 17/2 4 8.5 2.0 3.5 1.0 8 .1932833577D+00 .96D−08 0.06

.999 5/2 0 7.5 2.0 3.5 1.0 5 .1611987095D+00 .51D−09 0.02

.990 7/2 1 4.5 2.0 1.5 1.0 9 .8491753954D+00 .74D−09 0.07

.990 9/2 2 9.0 2.0 3.5 1.0 8 .2713138630D+00 .81D−09 0.05

Note. TimeT is in milliseconds.nx = λ andnγ = 2ν.
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TABLE III

Evaluation of Ĩ(s) Using D̄(4)
n

s ν λ R1 ζ1 R2 ζ2 n Ĩ(s) Error T

.005 5/2 0 6.5 2.0 2.5 1.0 5 .3601409132D−02 .18D−11 0.18

.010 7/2 1 7.0 2.0 4.0 1.0 4 .4816375329D−03 .28D−11 0.11

.010 9/2 2 6.5 2.0 1.0 1.0 6 .4561174046D−02 .54D−11 0.30

.010 13/2 3 7.5 2.0 3.5 1.0 5 .1811388162D−01 .33D−08 0.19

.010 17/2 4 8.5 2.0 3.5 1.0 6 .1932833577D+00 .40D−07 0.30

.999 5/2 0 7.5 2.0 3.5 1.0 5 .1611987095D+00 .70D−09 0.18

.990 7/2 1 4.5 2.0 1.5 1.0 5 .8491753954D+00 .21D−09 0.18

.990 9/2 2 9.0 2.0 3.5 1.0 6 .2713138630D+00 .74D−09 0.30

Note. TimeT is in milliseconds.nx = λ andnγ = 2ν.

TABLE IV

Values ofJ̃ (s, t) Obtained with 20 Correct Decimals

s t n12 λ R1 R2 R3 R4 ζ1 ζ2 max J̃ (s, t)

.999 .999 2 0 2.5 5.0 7.5 6.0 1.5 1.0 182 .1332888362507D+01

.999 .005 2 0 1.5 4.0 5.5 6.5 2.5 1.5 211 .4862207177866D−03

.005 .005 3 1 1.5 2.0 4.5 3.5 2.0 1.0 139 .2241938649088D−02

.005 .999 4 2 1.0 2.0 6.0 3.5 3.5 2.0 97 .4057636102915D−04

.999 .999 4 2 3.0 3.5 7.0 5.0 2.5 3.0 234 .1969258557126D−05

.999 .005 5 3 5.5 6.0 8.5 7.5 5.0 1.0 233 .1426496442765D−02

.005 .005 6 4 5.0 5.5 9.0 5.0 2.5 2.0 120 .4625584384664D−04

.005 .005 8 5 3.5 4.0 7.0 5.0 3.0 2.5 135 .1598600048274D−03

Note. ν1 = ν2, nγ12 = nγ34 = 2ν1, nx = λ, ζ3 = ζ1, andζ4 = ζ2.

TABLE V

Evaluation of J̃ (s, t) UsingHD̄(2)
n

s t ν1 λ R1 R2 R3 R4 ζ1 ζ2 n J̃ (s, t) Error T

.999 .999 5/2 0 2.5 5.0 7.5 6.0 1.5 1.0 8 .1332D+01 .78D−10 0.05

.999 .005 5/2 0 1.5 4.0 6.5 5.5 2.5 1.5 4 .4862D−03 .54D−11 0.02

.005 .005 7/2 1 1.5 2.0 4.5 3.5 2.0 1.0 7 .2241D−02 .90D−10 0.04

.005 .999 9/2 2 1.0 2.0 6.0 2.5 3.5 2.0 6 .4057D−04 .81D−10 0.03

.999 .999 9/2 2 3.0 3.5 7.0 5.0 2.5 3.0 6 .1969D−05 .92D−12 0.03

.999 .005 11/2 3 5.5 6.0 8.5 7.5 5.0 1.0 8 .1426D−02 .93D−10 0.05

.005 .005 13/2 4 5.0 5.5 9.0 5.0 2.5 2.0 7 .4625D−04 .32D−09 0.04

.005 .005 17/2 5 3.5 4.0 7.0 5.0 3.0 2.5 8 .1598D−03 .36D−09 0.05

Note. TimeT is in milliseconds.ν1 = ν2, nγ12 = nγ34 = 2ν1, nx = λ, ζ3 = ζ1, andζ4 = ζ2.
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TABLE VI

Evaluation of J̃ (s, t) Using D̄(6)
n

s t ν1 λ R1 R2 R3 R4 ζ1 ζ2 n J̃ (s, t) Error T

.999 .999 5/2 0 2.5 5.0 7.5 6.0 1.5 1.0 5 .1332D+01 .27D−09 0.70

.999 .005 5/2 0 1.5 4.0 6.5 5.5 2.5 1.5 4 .4862D−03 .13D−11 0.39

.005 .005 7/2 1 1.5 2.0 4.5 3.5 2.0 1.0 3 .2241D−02 .70D−10 0.18

.005 .999 9/2 2 1.0 2.0 6.0 2.5 3.5 2.0 3 .4057D−04 .99D−09 0.19

.999 .999 9/2 2 3.0 3.5 7.0 5.0 2.5 3.0 5 .1969D−05 .58D−12 0.71

.999 .005 11/2 3 5.5 6.0 8.5 7.5 5.0 1.0 5 .1426D−02 .17D−10 0.70

.005 .005 13/2 4 5.0 5.5 9.0 5.0 2.5 2.0 4 .4625D−04 .95D−09 0.39

.005 .005 17/2 5 3.5 4.0 7.0 5.0 3.0 2.5 5 .1598D−03 .34D−09 0.71

Note. TimeT is in milliseconds.ν1 = ν2, nγ12 = nγ34 = 2ν1, nx = λ, ζ3 = ζ1, andζ4 = ζ2.

TABLE VII

Values ofIn200
n100 Obtained with 20 Exact Decimals

n1 n2 nγ nx λ R1 ζ1 R2 ζ2 In200
n100

1 1 5 0 0 6.00 2.50 2.50 1.50 .9857079490760573D−01
2 1 7 1 1 4.50 1.50 2.50 1.00 .8761720595719150D+00
2 2 9 2 2 9.00 1.00 1.50 .50 .4459612679987856D+00
3 2 11 3 3 3.50 1.00 2.00 1.00 .2914294482354681D+01
3 3 13 3 3 8.50 4.50 5.00 3.00 .9938451545759212D−06
4 3 15 4 4 4.00 1.50 1.50 1.00 .1679864602693776D+01
4 4 17 4 4 2.50 .50 1.00 1.00 .1139978397585097D+00

Note. ERi = (Ri , 0, 0), i = 1, 2.

TABLE VIII

Evaluation of In200
n100 UsingHD̄(2)

n

n1 n2 λ R1 ζ1 R2 ζ2 n In200
n100 Error T

1 1 0 6.0 2.5 2.5 1.5 8 .985707949061D−01 .15D−11 0.80
2 1 1 4.5 1.5 2.5 1.0 7 .876172059562D+00 .95D−11 0.65
2 2 2 9.0 1.0 1.5 0.5 9 .445961267995D+00 .39D−11 1.06
3 2 3 3.5 1.0 2.0 1.0 8 .291429448235D+01 .83D−12 0.85
3 3 3 8.5 4.5 5.0 3.0 6 .993845549984D−06 .40D−12 0.50
4 3 4 4.0 1.5 1.5 1.0 8 .167986460269D+01 .32D−12 0.81
4 4 4 2.5 0.5 1.0 1.0 5 .113997839758D+00 .52D−12 0.39

Note. TimeT is in milliseconds.nx = λ andnγ = 2(n1 + n2)+ 1. ERi = (Ri , 0, 0), i = 1, 2.
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TABLE IX

Evaluation of In200
n100 Using D̄(4)

n

n1 n2 λ R1 ζ1 R2 ζ2 n In200
n100 Error T

1 1 0 6.0 2.5 2.5 1.5 4 .985707949111D−01 .35D−11 1.65
2 1 1 4.5 1.5 2.5 1.0 4 .876172059573D+00 .14D−11 1.68
2 2 2 9.0 1.0 1.5 0.5 5 .445961268013D+00 .14D−10 2.94
3 2 3 3.5 1.0 2.0 1.0 4 .291429448235D+01 .53D−11 1.67
3 3 3 8.5 4.5 5.0 3.0 4 .993845773692D−06 .62D−12 1.66
4 3 4 4.0 1.5 1.5 1.0 4 .167986460270D+01 .79D−11 1.71
4 4 4 2.5 0.5 1.0 1.0 3 .113997839759D+00 .19D−12 0.89

Note. TimeT is in milliseconds.nx = λ andnγ = 2(n1 + n2)+ 1. ERi = (Ri , 0, 0), i = 1, 2.

TABLE X

Values ofJ n200,n400
n100,n300 Obtained with 20 Exact Decimals

n1 n2 nγ12 λ R1 R2 R3 R4 ζ1 ζ2 J n200,n400
n100,n300

1 1 5 0 1.5 3.5 6.5 4.5 3.0 2.5 .1712887759698046D−01
2 1 7 1 3.0 4.5 7.5 5.0 2.0 2.5 .1096433803364221D+00
2 2 9 2 2.5 3.0 5.5 4.0 2.0 1.5 .5077289993314878D+01
3 2 11 2 1.5 2.5 6.0 4.0 1.0 3.0 .2249496975806865D+01
3 3 13 3 2.5 4.0 6.0 5.0 2.0 3.5 .1225528163777224D+00
4 3 15 3 2.5 4.5 7.5 6.5 3.5 2.0 .2005488272296953D−03
4 4 17 4 2.5 4.5 7.0 6.0 3.0 1.5 .3653628513846506D−02

Note. n3 = n1, n4 = n2, nγ34 = nγ12 = 2(n1 + n2)+ 1, nx = λ, ζ3 = ζ1 andζ4 = ζ2. ERi = (Ri , 0, 0), i = 1, 2,
3, 4.

TABLE XI

Evaluation of J n200,n400
n100,n300 UsingHD̄(2)

n to Evaluate J̃ (s, t)

n1 n2 λ R1 R2 R3 R4 ζ1 ζ2 n J n200,n400
n100,n300 Error T

1 1 0 1.5 3.5 6.5 4.5 3.0 2.5 7 .1712887760D−01 .79D−12 9
2 1 1 3.0 4.5 7.5 5.0 2.0 2.5 5 .1096433810D+00 .61D−09 5
2 2 2 2.5 3.0 5.5 4.0 2.0 1.5 5 .5077289993D+01 .21D−10 7
3 2 2 1.5 2.5 6.0 4.0 1.0 3.0 7 .2249496976D+01 .83D−11 9
3 3 3 2.5 4.0 6.0 5.0 2.0 3.5 5 .1225528164D+00 .43D−11 6
4 3 3 2.5 4.5 7.5 6.5 3.5 2.0 6 .2005488272D−03 .37D−13 4
4 4 4 2.5 4.5 7.0 6.0 3.0 1.5 6 .3653628514D−02 .21D−14 8

Note. TimeT is in milliseconds.n3 = n1, n4 = n2, nγ34 = nγ12 = 2(n1 + n2)+ 1, nx = λ, ζ3 = ζ1 andζ4 = ζ2.
ERi = (Ri , 0, 0), i = 1, 2, 3, 4.
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TABLE XII

Evaluation of J n200,n400
n100,n300 Using D̄(6)

n to Evaluate J̃ (s, t)

n1 n2 λ R1 R2 R3 R4 ζ1 ζ2 n J n200,n400
n100,n300 Error T

1 1 0 1.5 3.5 6.5 4.5 3.0 2.5 3 .1712887760D−01 .80D−12 45
2 1 1 3.0 4.5 7.5 5.0 2.0 2.5 2 .1096433810D+00 .70D−09 18
2 2 2 2.5 3.0 5.5 4.0 2.0 1.5 2 .5077289993D+01 .14D−10 20
3 2 2 1.5 2.5 6.0 4.0 1.0 3.0 3 .2249496976D+01 .31D−12 53
3 3 3 2.5 4.0 6.0 5.0 2.0 3.5 2 .1225528164D+00 .13D−11 23
4 3 3 2.5 4.5 7.5 6.5 3.5 2.0 2 .2005488276D−03 .41D−12 17
4 4 4 2.5 4.5 7.0 6.0 3.0 1.5 2 .3653628514D−02 .18D−13 17

Note. TimeT is in milliseconds.n3 = n1, n4 = n2, nγ34 = nγ12 = 2(n1 + n2)+ 1, nx = λ, ζ3 = ζ1, andζ4 = ζ2.
ERi = (Ri , 0, 0), i = 1, 2, 3, 4.

into infinite series
∑+∞

n=0

∫ xn+1

xn
f (t) dt, which we sum untilN = max (see Tables I and II)

and wherexi andxi+1 are two successive zeros of the integrandf (x) (see Tables VII–XII).
The finite integrals are evaluated using the Gauss–Legendre quadrature of order 16. The
LU decomposition method is used to solve the linear systems Eqs. (28) and (34).

In the analytical expression ofIn200
n100 andIn200,n400

n100,n300 we let nx andλ vary to compare
the efficiency of the transformations in the evaluation of the semi-infinite integrals whose
integrands are very oscillating.

The calculation times are computed using an IBM RS6000 340 to illustrate the rapidity
of the new method for a high predetermined accuracy.
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