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Three-center nuclear attraction and four-center two-electron Coulomb integrals
over Slater-type orbitals are required fab initio and density functional theory
(DFT) molecular structure calculations. They occur in many millions of terms, even
for small molecules and require rapid and accurate evaluationBTfactions are
used as a basis set of atomic orbitals. These functions are well adapted to the Fourier
transform method that allowed analytical expressions for the integrals of interest to
be developed. Rapid and accurate evaluation of these analytical expressions is now
made possible by applying tiD andHD methods for accelerating the convergence
of the semi-infinite oscillatory integrals. The convergence properties of the new
methods are analysed. The numerical results section shows the high predetermined
accuracy and the substantial gain in the calculation times obtained using the new
methods. @ 2000 Academic Press

Key Wordsnonlinear transformations; convergence accelerators; numerical inte-
gration; three-center nuclear attraction integrals; four-center two-electron Coulomb
integrals.

1. INTRODUCTION

In numerical analysis, in applied mathematics, and in physics, one must often deal \
infinite series and infinite or semi-infinite integrals to represent the solutions of ma
problems. In practice, these series and integrals have a very poor convergence. This pre
severe numerical and computational difficulties. Therefore, convergence accelerators
nonlinear transformation methods for accelerating the convergence of infinite series
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integrals have been studied for many years and applied to various situations. They are b
on the idea of extrapolation. Their utility for enhancing and even inducing convergence |
been amply demonstrated by Shanks [1]. They form the basis of new methods for sol\
various problems which were unsolvable otherwise and have many applications as \
[2, 3].

Three-center nuclear attraction and four-center two-electron Coulomb integrals are
rate limiting step ofab initio and density functional theory (DFT) molecular structure
calculations. These integrals contribute to the total energy of the molecule which is requi
to a precision sufficient for small fractional changes to be evaluated reliably. In practice,
precision threshold for the total energy is of orderdatomic units and therefore individual
integrals must be accurate to£8-10-1° au.

The choice of a basis set for the expansion of atomic orbitals is of great importance
ab initio calculations. A good atomic orbital basis should decay exponentially for larg
distances [4-8] and should also satisfy Kato’s conditions for analytical solutions of t
appropriate Scludinger equation [9].

The most popular functions usedab initio calculations are the so-called gaussian-type
orbitals (GTOs) [10]. With GTOs the numerous molecular integrals can be evaluated rat
easily. Unfortunately, these GTO basis functions fail to satisfy the above mathemati
conditions for atomic electronic distributions.

Exponential-type orbitals (ETOs) are better suited than GTOs to represent electron w
functions near the nucleus and at long range, provided that multicenter integrals using ¢
functions could be computed efficiently. The ETOs show the same behavior as the e;
solutions of atomic or molecular Satdinger equations satisfying Kato’s conditions [11].

Among the ETOs, slater-type functions (STFs) [12, 13] have a dominating position, t
cause their analytical expression is very simple; however, the use of STFs has been preve
by the fact that their multicenter integrals are extremely difficult to evaluate for polyatom
molecules, particularly bielectronic terms. Various studies have focused on the Bse ©
functions proposed by Shavitt [14] and introduced by Filter and Steinborn [15, 16]. The
functions are analytically more complicated than STFs but they have much more appea
properties applicable to multicenter integral problems. They possess a relatively simple
dition theorem [15, 17—-19] and extremely compact convolution integrals [17, 20], they ¢
be expressed as finite linear combinations of STFs [16, 17], and their Fourier transforms
exceptionally simple [18, 21]. ThB functions are well adapted to the Fourier transform
method [22—-37], which led to analytical expressions for multicenter bielectronic integr:
overB functions. These analytical expressions present severe numerical and computati
difficulties due to the presence of semi-infinite very oscillatory integrals.

The molecularintegrals under consideration are to be evaluated via a numerical quadre
of integral representations in terms of nonphysical integration variables. These inte
representations were derived with the help of the Fourier transformation method [27, 3

It is well known that the numerical integration of oscillatory integrands is beset wit
difficulties, especially when the oscillatory part is a (spherical) Bessel function and no
simple trigonometric function [38, 39]. The semi-infinite integrals can be transformed in
infinite series of integrals of alternating sign. These series are slowly convergent, and th
why their use is prohibitively long for sufficient accuracy. The epsilon algorithm of Wyn
[40] or Levin's u transform [41] accelerates the convergence of infinite series. In the ce
of the semi-infinite integrals involved in the analytical expressions of molecular integra
however, the calculation times for a sufficient accuracy are still long, especially for lar
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values ofs. andv, since the zeros of, (vx) become closer, and farclose to 0 or 1, since
the exponential decreasing p&r,t of the integrands becomes a constant. Thus the rap
oscillations of j; (vx) cannot be damped and suppressed, and new numerical integrat
techniques are required.

In previous work [42, 43], we showed that all the conditions of applicability of th
nonlinearD andD transformations [44, 45] are satisfied by the integrands of semi-infini
integrals involved in the analytical expressions of the three-center nuclear attraction anc
four-center two-electron Coulomb integrals.

The D andD transformations in a sense combine@&ansformation [46], the confluent
€ algorithm [47], and theP transformation [48]. To apply these two transformations ftc
accelerating the convergence of the semiinfinite inteﬁﬁf f (x) dx, the integrandf (x)
is required to satisfy a linear differential equation of ordemith coefficients having
asymptotic expansions in inverse powers of their argurersx — +oo.

We demonstrated [42, 43] that the integrands of interest satisfy linear differential eq
tions of order 4 in the case of three-center nuclear attraction integrals and of order 6 in
case of four-center two-electron Coulomb integrals, of the form required to applp the
andD transformations. The results obtained were satisfactory. Unfortunately, the calcl
tions of the approximations using these two transformations present severe numerical
computational difficulties, in particular, for the four-center two-electron Coulomb integra

In [49, 50], we showed that the order of the linear differential equations satisfied by 1
integrands of the fornf (x) = g(x) j.(x), wherej; (x) is the spherical Bessel function of
order x, whereg(x) is of the formh(x)e?™®, where¢ (x) is such thatp(x) ~ Pc(x) as
X — 400, and whereP(x) is a real polynomial irk of degreek, can be reduced to two,
using some properties of reduced Bessel and spherical Bessel functions. This approa
shown to be applicable to the integrands of question.

The present work focused on the generalization of the method leading to the reductio
the order of linear differential equations required to applgnd D to two, keeping all the
other conditions satisfied. This result led to an extension of the range of functions satisfy
second-order linear differential equations with coefficients having asymptotic expansi
in inverse powers of their arguments and satisfying all the conditions of the applicability
the D andD transformations. Great simplifications in evaluating the semi-infinite integra
are obtained using the approach presented in this work, leading to new methods tha
calledHD andHD.

The convergence properties of thd were analysed and they showed that from the
numerical point of view the new approach corresponds to the most ideal situation.

The numerical results section shows the substantial simplification and the gain in
calculation times obtained using the new method compared with other alternatives.

The symbolic programming language Axiom [51] is used to confirm the analytical d
velopments and to provide exact values of the semi-infinite integrals.

2. GENERAL DEFINITIONS AND PROPERTIES

We definedA® for somey as the set of infinitely differentiable functiomgx), which
have asymptotic expansions in inverse powers a§x — +oo, of the form

~ XY &, %,
p(x) X<ao+x+xz+ , 1)
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and their derivatives of any order have asymptotic expansions, which can be obtainec
differentiating that in Eq. (1) formally term by term.

For y € R, we denote byA”) the set of functionsf (x) such thatf € A®) and
liMy_ 100 X7 £(X) # 0. Thus, f € A®) has an asymptotic expansion in inverse power:
of x asx — +o0 of the form given by Eq. (1) witlag # O.

We defined the functionaly(f) by ag(f) = ap # 0 in the case wherd ¢ AY) for a
certainy. i

We definede®” for somey as the set of functiong(x) such that

gx) =e'® where fe AY.

The reduced Bessel functi&a,l/g(;r) is defined by [14, 15]

n

c I (2n—j -1
k. 1 = = ' 7 gi-n ] 2
1N =7 j;(]_l)!(n o2 en’. 2

The spherical Bessel functigin(x) for orderl € Ny is defined by [52]

00 = 0 ZX) (5). ®)

The spherical Bessel function is also defined by [52]

1) = [7/(201Y2 3 412(%), 4

whereJ ;1/2(X) stands for the Bessel function of the first kind [52].
1 (x) and its first derivativg/ (x) satisfy the recurrence relations [52]

Xji—1(X) + Xji+1(X) = 2 + D ji(x) )
i—2X) = + D jipa(x) = @ + Djj(x),
where
000 = =™ ang jy00) = S 0O, ©)
X X X

The zeros of the spherical Bessel functipfx) for| > 1 are identical to the zerg§, ; ,,
n > 1 of J1/2(X) because of the relation Eq. (4).

For the followmg we sef", = jl}1,/v,n=1,2,..., which are the successive zeros
of ji(x). %12 andhO are assumed to be 0.

The surface spherical harmoni¢™ (6, ¢) is defined explicitly using the Condon and
Shortley phase convention as [53]

(2 4+ D = ImphH
4r (I +Imph

Y. ¢) = m*““[ } R (cos)e™. (7)

P™(x) is the associated Legendre polynomial thf degree andnth order:

d I+m 2_
P™(x) = (1- 2>m/2< dx) {%] (8)



B FUNCTIONS AND THEIR CONVERGENCE PROPERTIES 477

The Rayleigh expansion of the plane wave functions is defined by [54]
o 4oo |
e PT =" A (D) i UBIF DY, 90) [Y" 05, 0p)] " ©
1=0 m=—I
The Fourier integral representation of the Coulomb oper?géﬁl‘ is given by [55]
1 1 efiE~(F7 Ry) R
——=— | ——dk. 10
IF — Ry 2712/|z k2 (10)

The Gaunt coefficients are defined as [56—62]

T 21
(Il1my]lmy|lsmg) = / / (Y0, )] Y20, 9)Y5° (6. @) Sind d6 d.
6=0 J =0

These coefficients linearize the product of two spherical harmonics,

lmax
Y™ 0, )] 0. 0) = > (2mallimglimz —mp)Y™ ™ @, 9).  (12)

I:Imin.z

where the subscript= I ,n 2 in the summation symbol implies that the summation index
runs in steps of 2 froy,n t0 Imax. The constantkyi, andlmax are given by [59]

lmax = 11 + 12 (12)
max(|ly = o, Mz —ma]), if |y + 1z + max(ly = Iz, jmg — my) is even
min—{ma)(||l_|2|,|m2_ml|)+1, if 114 12 + max(|l; — I5|, [my — my|) is odd
(13)

The Slater-type orbitals are defined in normalized form according to the relations|
[12,13]

X1 (@F) = N, Or" e Y6, ¢r), (14)
wheren=1,2,...,0<| <n-1,and-l <m <. N(n, ¢) stands for the normalisation
factor defined by

N(n, £) = ¢ "H20)* M /@2n) V2, (15)

The B functions are defined as [15, 16]

I ~
CO @Y™ 6r. ). (16)

B () = 27 (n 4 Dl

The B function can only be used as an L.C.A.O. basis functions4fN holds. For
—I < n <0, aB function is singular at the origin, and iif = —| — v with v € N holds,
then aB function is no longer a function in the sense of classical analysis but a derivati
of the three-dimensional Dirac delta function [63].
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The Slater-type orbitals can be expressed as finite linear combinatiddgusfctions
[16],

Si(—lﬂ”*%n—iﬂ?*%l+pﬂ

m 2N m =
Ini(€r) = £~ (2p—n—D!@2n—2 —2p Bp1 (CT). (17
where
. n—-"n/2 if n—1 even
p= { . (18)
(n—14+1/2 ifn—1odd
and where the double factorial is defined by
PN =2x4x6x---x (2k) = 2¢k!
(k+ DN =1x3x5x---x (2k+ 1) = DL
on=1
The Fourier transforn@{f} (¢, p) of B\ (¢F) is given by [18, 21]
(—ilp)'
|(§ p) \/7{2n+| 1(4_2_’_ |p|2)n+|+l | (st (/)p) (19)

3. THREE-CENTER NUCLEAR ATTRACTION AND FOUR-CENTER TWO-ELECTRON
COULOMB INTEGRALS OVER B FUNCTIONS

The three-center nuclear attraction integral is
T = / (B, (¢a(R— OA)]"——— B [c(R— OBIdR.  (20)
IR — OC]|
The four-center two-electron Coulomb integral is
Tnismnaamy. = /R (B G (R— OW)]"[B, cs(R — 00)]°
< B Lo = OBIB [cu(R — ODJAR AR, (@1

By substituting the integral representation of the Coulomb operator Eq. (10) in the ab
equations, we can re-write these two integrals as

1 e|x Ry - . _
Toiim = 53 |~ (B (@F)Ie B [ — Ro)l) dX,  (22)

wheref = R — OA ﬁl = OCand Iiz — AB, and

j“z'zmz»n4|4m4 _ 1 eIXR41 iyle X7 BM [c2(F R ]
nglamg,nglamz — ﬁ T< na, |1(§ )| | 2,12 4-2( - 21) >F

<B$4|4(§4F/)|e_'x 7 |Boyy,[¢a(F §34)]>; dXx, (23)
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- -

whereR; = OA R, = OB, R3 = OC, Ry = OD,f = R— Ry, /' = R — Ry, andR;j =
R — R;.
By applying the Fourier transform method [27, 31] to the terms

(B, (@)le” X By, [ (7 — R)])r

involved in the Egs. (22) and (23), one can obtain analytical expressions for these integ
given by [27, 31]

022 — 8(4r)2(20; + DI (2, + DIt

|1 my
(ni+1lg4+np+ 1+ 1! 214111, 20 1
(n+ 10N +1)! °t 2

SN (g damallamills — 1ymg —m))
x> ZI/(') Y@+ a1y + 1

oM ——
17=0m}=

I} 141y (T2M2ll oMyl — 15mp — mj)
. Z Z O D o DR = 15) + 10

Z=0my=—1}

I o

Lo

x> pmpllgmylim, — M) RY ™ (6, ¢, )
I=l.-2

1\
max

T\A
x> (=)l = 15my — mbly — My — myau)
A=l 2

min’

(5 o
2nnztlitl=i+i(ng + Ny 1y + 1 — j + D!
1 ’ ’
* / gl (1 — gyt gy, )
s=0

+o0
X {/ XM MJA( x)dx|d (24)

Jx=o [y (s, x)]™

where

[y(s,¥)]? = (1 —9)¢2 + s¢Z + s(1 — 9)X?
i=1-9R— Ry, v=[3], R =Rl
n, =21 +li+n+lp) -1 +15) -1 +1

1
V=n1+n2+|1+|2—|—J+§

w=(My —mp) — (Mg — my)
=l =1, +1, -1}

Al =[] +15—1)/2]
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(ny+ 114+ n2+15 4+ 1!
(ny + DNz +12)!

N3 +lz3+ng+ 14+ 1!
(N3 +13)!(Ng +14)!

Jilamemdlate — 8(47)>(21 + DN (2, + DI

x (—1)1H2(205 + D12, + DN

2n;+l—1,2np+l,—1
)

X &y

Iy H12 /v / /
xt 2ns+la—1 2n4+l4 1 jli+] (lamy [l3mi [l — 1imy — mj)
3 § §

@ +DN20; —15) + 1]

17=0 mi=p1

I2 22

o (l2mallsmpll — 15m, — my)
|2+I I (Ilomp 2ilhlI2 — 1HIT2 7}
i

x Z Z (2|f+1)||[2(|2_|2)+1]n

15=0 my=p21

I3 U32

{lamg|lamsllz — 12mg — ;)
i13+1; (Iamg]|lzmy 3 3
DD @+ D235 — 15) + 1]!

15=0 mi=pa

la a2

, cAlamg MG |l — 1my — )
l4+1}) A (lamg 4'"4 4 4
XZ D R = T + 11

=0 m4 41

|1,max

| My—m]
x Z (Mo lmy Im'2 — my) RO, Y, 2 (0,0 0,,)
I=|]..minw2
Iimax

X Z (I2 = I5mp — mj|ly — I3my — mi[l12mpe)

_
Ilz*ll,mm'2

|2,ma><
Vo
Y MG IEmyllm A — mp) R (0, 0g,,)
|/=|2minq2
Iémax
| _I/ _ / I _I/ _ / I _ / _ _ /
X (I4 — 1zmg — my|lz — I3mz — mg|lzgmg — M, — (M3 — M)
I34=|/2.m\n’2
Ihax
FNA
XY (=) (1M llaama — M — (Mg — M) [Aw)
Azl#ﬂn’z

oz Al12\ [Alzg (—1)hztise

* J-;o J-;O( j12 ) ( j34 ) 2ot (y 4 L D) (v + 34 1)1
L gotlotli(q — gyt p1 phetlatls (] _ gynatlatle

" / o sil-9 [*0 th(1—t)l

l/mx kvl[RZlVlZ(s )] ky,[ Raayaa(t, X)]

Y2 (05, @5)

o s oo [t e XX dtds(29)

where

= (Mp — M) — (Mg — M) + (Mg — M) — (Mg — M)
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pai = min(l, mi +1; —1)), fori =1,2,34
[y12(5. X)]% = (1 — 9)¢Z + s¢Z + s(1 — $)X?
[yaat, X)]% = (L — )¢F +t&f + t(1 — H)x?
i=1-9Ru+1—t)Rz— Ry

. 1
Vl=n1+n2+|1+|2_|_112+§
;. 1
V2=n3+n4+|3+|4—|—134+§
17 +15 =1 12+, -1
Alpp=21"2 — Algy=2"24 =
12 > 34 >

nm=2(n1+I1+n2+I2)—(I/1+I/2)—I+1
Ny =2(N3 + 13+ s +1g) — (54+1) = 1"+ 1.
nx=I1—I’1—|—I2—I§—|—I3—Ié—|—l4—ll’1

M1 = Mp — M, — (Mg — mMy).

The constantknax andl i are given by Egs. (12) and (13).

The numerical evaluation of the analytical expressions obtained has been provento be
difficult. This is due to the presence of the semi-infinite integrals, which will be referre
to asZ(s) and J (s, t) respectively, and whose integrands oscillate rapidly in particule
for large values oty and . Different approaches were used [64—67], namely the Gaus
Laguerre quadrature, the epsilon algorithm of Wynn [40], and Levirtsansform [41],
which accelerate the convergence of the semi-infinite integrals after transforming them
infinite series.

In previous work [43, 50], we have shown that these methods are inefficient in t
evaluation of these kinds of semi-infinite integrals especially in the regions vstzrdt
are close to 0 or 1 where the oscillations of the integrands become very rapid.

It is shown that the integrands of interest satisfied all the conditions of the applicabil
of the nonlineaD and D transformations [42, 43]. These transformations are efficient i
accelerating the convergence of semi-infinite oscillatory inte@ats f0+°° f (t) dt whose
integrandsf (t) satisfy linear differential equations of the form [44]

f)=> p®f®),

k=1

where the coefficientpy, fork = 1, 2, ..., m should satisfy the following conditions [44]:
1. p are inA(i_k), wherei, <k, fork=1,2,..., m.
2. limy_ 400 pi(("l)(x)ﬂk—i)(x) =0, fork=i,i+1....mi=1...,m

3> -1, 10 =1 (1 =K+ D) pco# L Pro = My oo XK p(X).

Under the above conditions, one can obtain an asymptotic expansigiﬁ‘f’of (t)dtas
X — 400, which is given by [44]

m-1

+00 '
/ f(t)dtNZf(k)(x)xjk<ﬁ0’k+%+%+"')s

k=0

481

(26)



482 HASSAN SAFOUHI

where
jk <max(ix+1,ik2—1),. -m+k+1), k=0,1,... m—1.

The approximation o8 using the nonlineab transformation, satisfies tié¢ = 1 + mn
equations given by [44]

D(m)_/ f(t) dt £ % ﬂ'k, [=0,1,...,mn, 27
td +Z (X)X Z . 0 mn (27)

i=0

whereD(™ and thegix, fork=0,...,m—1;i =0,1,...,n— 1 are theN = mn+1
unknowns of the linear systemsy is the minimum ofk + 1 andsy, wheres is the largest
of the integerss for which limy_, ;o x3f®(x) = 0. Thex forl =0, 1, ..., mnare such
thatxg < X3 < ---and lim_, 1o X = 400 [45].

Theﬂ_i,k fork=0,...,m—1andi =0,1,...,n— 1do not have to be identical 8
in EQ. (26) since the asymptotic series in Eq. (26) are usually infinite [44].

The order of the above linear system can be reduced by chorsihg- 0, 1, ... to be
the successive zeros 6{x). In this case the Eq. (27) can be re-written [45]

<m>—/ f(t)dt+Zf(k)(x|)x"kZﬁ'k l=0,1,...,(m=1n, (28)
X|

where D(™ and the By, for k=1,....m—1; i =0,1,...,n—1 are theN =
(m — 1)n 4+ 1 unknowns of the linear system.

In the case of the three-center nuclear attraction integral, the integrand, which will
referred to ad, s(x) of 7(s), satisfies a fourth-order linear differential equation of the forrr
required to applyD and D [42]. For the four-center two-electron Coulomb integral, the
integrand which will be referred to &g s ; (X) of J (s, 1), satisfies a sixth-order linear differ-
ential equation of the form required to app]yandls [43]. The results obtained using these
transformations were satisfactory. Unfortunately, the calculations of the approximatic
D@ of Z(s) andD©® of 7 (s, t) present severe numerical and computational difficultie:
since we need to calculate tfra — 1) successive derivatives of the integrands and the linez
set of equations to solve is of ordgn — 1)n + 1, which can be very large if the values of
m andn are large. In [49], we demonstrated that the order of the differential equations s
isfied by the integrands of the forf(x) = g(x) j,(x), whereg(x) = h(x)e?*® and where
h e A for somey and¢ (x) is such thatp (x) ~ P(x) asx — +oo and wherePy(x) is
a real polynomial irx of degreek, can be reduced to two.

In this work, we presented a general method leading to the reduction of the ord
of linear differential equations to two, keeping all the conditions of the integrability an
the applicability of theD and D transformations satisfied, using some useful calculatiol
techniques and some properties of the reduced Bessel functions and Paieicas [68].
This led to great simplifications in the applicationdfand D transformations.

4. THE HD AND HD METHODS

Let us consider a functioffi (x) of the form f (x) = g(x) j,(X).
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THEOREM1. Let g(x) be afunction in [0, +oo[ which is the set of twice continuously
differentiable functions. If ) is of the form

g(x) = h(x)e’™,

whereh € A” andg € A®, for somey andk, then the functiorf (x) = g(x) j; (x) satisfies
a second-order linear differential equation given by

f(X) = pa(x) £'(X) + p2(x) (%), (29)
where
p1(x) € ACD and px(x) e A©@ if k=0
pi(x) € ACKD and  py(x) € AT if k £ 0.

Proof. |, (x) satisfies a second-order differential equation given by

2

X .,
2z (30)

. 2X .
J;\(X)=—ﬁ],\(x)— X

A

By replacing in the above equatign(x) by f(‘:)) one can obtain a linear differential

equation satisfied by (x), which is given by Eq. (29), where

2x2 (hh&xf +¢) 2
200 and pz(x) = 500 (31)

p1(X) =

and where

VA ’_ hx) h (x) e
w(X) = —X Kh(x) +¢ hoo) +¢ —2X ho +¢ AC—x. (32)
If k = 0thenpy(x) € ACY andpy(x) € A©.
If k # 0 thenpy(x) € AT andpy(x) € A-%+2),

We used the symbolic programming language Axiom to verify the above expressions
to obtain the analytical expressions ta(p1) andag(p2), which are given by

ao(e)

ao(Py) = Tt a@)? and ao(pp) = —

1
1+ ao(¢)?
ap(p1) andag(pz) are not equal to zero. Thus, the coefficiepisx) and px(x) are in
AD and AD) wherei andj are given in Theorem 1.

THEOREM 2. If g(x) is a function in CG[0, +oo[ and of the form gx) = h(x)e?™,
where he A”), ¢ € A® with k > 0 andag(¢) < 0, then the function x) = g(x) j»(X)
is integrable o0, +oo[ and satisfies all the conditions of applicability of the nonlinear D
and D transformations.

We shall now state lemmas that will be useful to prove Theorem 2.
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LEMMA 1. Let f(x) be in A?) for somey. Then

1. Ifg e A® then f-ge A andao(fg) = ao( f)ao(g).

2. Vk e R, x*f € AKX andag(xkf) = ao( f).

3. The function ¢ f € A® andag(cf) = cao(f) for all ¢ # 0.

4.1fge A® andy — 8 > 0, then f+ge AY andao(f 4+ @) = ag(f). If y =5 and
ao(f) # —ao(g), then the function £+ g € AY) andao(f + g) = ao(f) + ().

5. Let m> 0 be an integer. lfxo( f) > 0, then the function P € A™) andag(f™) =
Oto(f)m.

6. The functionl/f € A" andag(1/f) = 1/ag( f).

The proof of Lemma 1 follows from the properties of Poireaeries.
LEMMA 2. Let fe A® where k is a positive integer and 0. The function
kns1/2(f (x)) € A"0eA” and can be written in the form

Rm—%(f(x)) = fL(x)e ™,

where f; € A (ag( f1) = (ao(f))" # 0).
By using the analytical expression of the reduced Bessel function which is given
Eg. (2), one can easily demonstrate Lemma 2.

Proof of Theorem 2. If k > 0 andag(¢p) < 0, then lim_, .o ¢ (X) = —o0. The func-
tiong(x) € C?[0, +o0[. Fromthese arguments, it follows thatx) is integrable on [0+oc[.

Using Theorem 1, we can show that the functib(x) satisfies a second-order linear
differential equation with coefficients;(x) € AC*D and p(x) € A%+,

The functionf (x) is exponentially decreasing; thus

Jim Pl P fc D) =0, k=i,2 i=12
Using the fact thapy(x) € AT py(x) € A%+ andk > 0, it follows that

. 1 1
Po = XETOO X pi(X) =0, pro= . 2 p2(x) =0

lim
—+00

and, therefore,

2
vl > -1, ZI(I —1)--(—k+Dpo=0+#1
k=1

The conditions of applicability ofD and D for accelerating the convergence of
0+°° f (t) dt are now shown to be satisfied.

The approximatiotiD of S = f0+°° f (t) dt using theD transformation is given by

M 1 n-1 -~
HD? = / FO dt+> (@) . 06)) %™ ﬁ'—f I=01....2n. (33)
0 k=0 io X
Thex,| =0,1,...,2narechosentosatisiy < X1 < -+ < Xon and liMy_, 100 Xn = +00.

HD® andBiy,i =0,1,...,n—1,andk = 0, 1 are the(2n + 1) unknowns of the above
linear system.
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By choosingx = jiﬁ/z forl =0,1,...,n, the above linear set of equations can be
re-written as
s _ [” -  Bia
HD, :/ f(t)dt+9(x|)11(x|)xflzx—f, l=0,1,...,n (34)
0 i=0
HD® andp; 1,i = 0,1,...,n — 1 are the(n + 1) unknowns of the above linear system.

5. EVALUATION OF THREE-CENTER NUCLEAR ATTRACTION AND FOUR-CENTER
TWO-ELECTRON COULOMB INTEGRALS

The integrandf, s(x) of 7(s)is given by
fas(X) = Ga(X) ;. (vX),
where

. kns1/2[Roy (s, )]

900 =X s 0T

Let the functiony (x) be defined by

$(0) = Roy(5,X) = Roy/ (L= )2 + 52 +5(1— 9.
¢(x) isin AD (Lemma 1 fom = 3).
. 1 ~o
From Lemma 1, it follows that < € AC™). .
By using Lemmas 1 and 3,(x) can be re-expressed in the form
0a(X) = g1 ()€ ?®, g e AT and ¢ € AP with ag(¢p) > O.

The integrandf; s (x) of J (s, t) is given by f; s+ (X) = gj (X) j,(vX), where

an% [Re1y12(s, X)) Rn34+% [Raaysa(t, X)]
[y12(s, )] "2 [3a(t, X)]"7s

gj(x) = x™

Let the functionsp;(X) andg,(x) be defined as

¢1 =Ry (s, X) = R21\/(1 — ) +sti+s(1—s)x2e AV

$2 = Raay (t. X) = Raay /(1 - @3 + 123 + 11— )x2 € AD.

If we let ¢ (X) = p1(X) + ¢2(x), then from Lemma 1, it follows thag; (x) still in AD

andag(¢;) = ao(¢1) + ao(¢2) # 0.
Using these arguments, we can re-write the funcgipix) as

O3 € AM2tNaat=T,—yy,)

(X)) = X ei¢l(X)a s
gj (x) = g3(x) {qu e AD  with ag(gj) > 0.
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By using Theorem 1, we can show thiats(x) and f¢ s (X) satisfy second-order linear
differential equations of the form given by Eqg. (29).

From Theorem 2, it follows thaf, s(x) and f.s1(x) are integrable on [0+oo[ and
satisfy all the conditions of applicability d and D.

fas(X) and f¢ 51 (X) are exponentially decreasing; thus= k + 1.

The approximationsiD'? of Z(s) and.7 (s, t) can be obtained by solving the linear set
of equations (34) witlr; = 2 andx = j; ', 1 =0,1,.

6. CONVERGENCE PROPERTIES

Let us consider a functiori (x) integrable on [0+oo[ satisfying all the conditions of
applicability of the nonlineab transformation.

Let S= [ f(®)dt, F(x) = [y f(t)dt and ®(x) = x*f®(x) for k=0,1,...,
m — 1. The approximatioD{™ of S satisfies the linear system of ord@nn+ 1) given
by [44]

m—1 -1 -
Bik
Dr(]m):F(x|)+ZCI>k(X| ZT 1....,mn (35)
k=0 i=0
COROLLARY 1 [69]. Let(yo, v1, ..., ¥mn) be the first row of the inverse of the matrix of

the linear system Eq35). Then

mn
|S—D{"| < (Zhﬂ)o(n‘j), Vj >0 ash— +oo. (36)
1=0

COROLLARY 2 [69]. If S M In| < L < oo, then
|S—D{™|=o0(n™"), Vj>0 asn— +oo. (37)

Using the fact that the first column of the matrix of the linear system Eg. (35) is the vec
(1,1,...,1)7 (T denotes transpose), it follows tHe}"y 1 = 1 and thereforé ™% [y1] >
1.

Now, let us consider the linear system given by Eq. (34). We defined the furdetion =
X71g(X) j; (X).

Using the fact thax, = J,'\ﬂ/z, | =0,1,...,narethe successive zerosjptx), one can
easily show that

cI>;|_(X|)(I>;|_(X|Jr;|_) <0, 1=012,... (38)

We defined the matrid, by

F(x0) F(x1) F(xn)
®1(X0) D1(x1) D1 (Xn)
1 1 1
Ma= | x! xg* - x? (39)
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and letK, be the matrix obtained after replacing the first rowM§ with the vector
1 1 1

(‘I’l(xo) P B(x1)’ T cI’l(Xn))' _
Using Cramer’s rule, one can expré$B@ as

_detMp)  SLo(=D)'[Vi/1(x)]F (%)

HDY = = 40
" det(K2) S o(=D' M/ ®1(x)] (40)
whereV, denotes the minor df (x)/®1(X) in M, or of 1/®1(x) in K.
The minorsV;,| =0, 1, ..., nare given by
Vo:V(XIl,...,Xn_l) (41)
Vi=V(xh X LX), 1=1...,n-1 (42)
Vo= V(L xih), (43)
whereV (ag, a1, . . ., ap_1) is the Vandermonde determinant, which can be expressed by
V. a1, ....on-) =[] (2 —ai). (44)
O<i<j=<n-1
Sinceag < a1 < -+ - < o1, it follows thatV («g, o1, ..., an_1) > O.
Using the fact thaHD'? = S"I", 1 F (x;), we can obtain
-D'[Vi/®
= n( )'[ _|/ 1(x)] _0<l<n. (45)
Yico(=DI[Vi/@1(xi)]
AsXg<X1 < ..., allV, for 0 <I| < n have the same sign. Now by using Eq. (38), we

can easily show that-1)' [V;/®1(x)], for 0 < | < n have also the same sign. Therefore,
vl, y1 > 0 and consequently

Corollary 3 becomes:
COROLLARY 2. |S—HD?|=o0(n"}), Vj>0 asn— +oc.

The convergence properties of thid method are without any constraint. From the
numerical point of view, the situation in which > 0, VI corresponds to the most ideal
one.

7. CONCLUSION

Analytical expressions can be obtained for the three-center nuclear attraction and
four-center two-electron Coulomb integrals by choosingBhieinctions as a basis set of
atomic orbitals and applying the Fourier transform method. These analytical expressi
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TABLE |
Values of Z(s) Obtained with 20 Correct Decimals

s mooon A Ri o R. IS max 1(s)
.005 1 1 0 6.50 2.00 2.50 1.00 201 .360140912983302D
.010 2 1 1 7.00 2.00 4.00 1.00 86 .481637530646110B
.010 2 2 2 6.50 2.00 1.00 1.00 470 .456117321707410D
.010 3 3 3 7.50 2.00 3.50 1.00 133 .181139626222770D
.010 4 4 4 8.50 2.00 3.50 1.00 167 .193274110480810D
.999 1 1 0 7.50 2.00 3.50 1.00 525 .161198710040904D®
.990 2 1 1 4.50 2.00 1.50 1.00 222 .8491754257741200
.990 2 2 2 9.00 2.00 3.50 1.00 251 .2713138065589300

Note n, = A andn, = 2v.

involve semi-infinite very oscillatory integrals whose integrands are shown to be suita
for the application of the nonlined and D transformations.

This work presents a general approach, using some properties of reduced Bessel, s
ical Bessel functions, and Poineaséries, for reducing the order of the linear differential
equations required to apply tH2 and D to two. This led to a great simplification in the
application ofD and D in calculating the approximations of semi-infinite oscillatory inte-
grals. The calculation of the successive derivatives is avoided and the order of the linea
of equations to solve is reducedrot 1, wheren is the order of the accuracy. This new
approach is now shown to be applicable to the semi-infinite integrals of interest.

Obviously, this great increase of rapidity of the new methods, which we ddlzdnd
HD, is a key issue. In the molecular context, many millions of such integrals are required
close range terms; therefore, rapidity is the primordial criterion when the precision has b
reached. The progress represented byHhepproach is another useful step in developing
software for evaluating molecular integrals over Slater-type orbitals.

8. NUMERICAL RESULTS

The exact ofZ(s) and J (s, t) are computed to 20 exact decimals using the symboli
programming language Axiom (Tables I, IV, VII, and X), after transforming the integral

TABLE 1l
Evaluation of Z(s) Using HD®

s v A R, o R, I n Z(s) Error T
.005 52 0 6.5 2.0 25 1.0 7 .3601409132D2 .59D-11 0.04
.010 72 1 7.0 2.0 4.0 1.0 7 48163753293 .50D-11 0.04
.010 92 2 6.5 2.0 1.0 1.0 9 .4561174046D2 .27D-11 0.06
.010 132 3 75 2.0 3.5 1.0 7 .1811388162D1 .50D-08 0.04
.010 172 4 8.5 2.0 3.5 1.0 8 .193283357#D0 .96D-08 0.06
.999 52 0 7.5 2.0 3.5 1.0 5 .1611987095D0 .51D-09 0.02
1990 72 1 4.5 2.0 1.5 1.0 9 .8491753954D0 .74D-09 0.07
.990 92 2 9.0 2.0 3.5 1.0 8 .2713138630ID0 .81D-09 0.05

Note TimeT is in millisecondsn, = A andn, = 2v.
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TABLE I
Evaluation of Z(s) Using D

s v A R & R, & n 7(s) Error T
.005 52 0 6.5 2.0 2.5 1.0 5 .3601409132D2 .18D-11 0.18
.010 72 1 7.0 2.0 4.0 1.0 4 .4816375329D3 .28D-11 0.11
.010 92 2 6.5 2.0 1.0 1.0 6 .4561174046D2 54D-11 0.30
.010 132 3 7.5 2.0 3.5 1.0 5 .1811388162D1 .33D-08 0.19
.010 172 4 8.5 2.0 3.5 1.0 6 .193283357+D0 .40D-07 0.30
.999 52 0 7.5 2.0 3.5 1.0 5 .1611987095%D0 .70D-09 0.18
.990 72 1 4.5 2.0 1.5 1.0 5 .8491753954D0 .21D-09 0.18
.990 92 2 9.0 2.0 3.5 1.0 6 .2713138636D0 .74D-09 0.30

Note TimeT is in millisecondsn, = A andn, = 2v.

TABLE IV
Values of F (s, t) Obtained with 20 Correct Decimals

s t m » R R R R & & max Js
.999 .999 2 0 2.5 5.0 7.5 6.0 1.5 1.0 182 .133288836250F¥D
.999 .005 2 0 1.5 4.0 55 6.5 2.5 1.5 211 .486220717786BD
.005 .005 3 1 1.5 2.0 4.5 35 2.0 1.0 139 .2241938649088D
.005 .999 4 2 1.0 2.0 6.0 3.5 3.5 2.0 97 4057636102916
.999 .999 4 2 3.0 3.5 7.0 5.0 2.5 3.0 234 .1969258557 128D
999 .005 5 3 55 6.0 8.5 7.5 5.0 1.0 233 1426496442 765D
.005 .005 6 4 5.0 55 9.0 5.0 2.5 2.0 120 4625584384683
.005 .005 8 5 3.5 4.0 7.0 5.0 3.0 25 135 .159860004827D

Note vy = vz, Ny = Ny = 201, N = 4, {3 = 3, aNdes = &

TABLE V
Evaluation of J (s, t) Using HD®

s t v > R R R R & & n (s, t) Error T
.999 .999 32 0 2.5 5.0 7.5 6.0 1.5 1.0 8 .1332D1 .78D-10 0.05
.999 .005 32 0 1.5 4.0 6.5 55 2.5 1.5 4 .4862D3 54D-11 0.02
.005 .005 72 1 1.5 2.0 45 3.5 2.0 1.0 7 224102 .90D-10 0.04
.005 .999 92 2 1.0 2.0 6.0 2.5 3.5 2.0 6 405404 .81D-10 0.03
.999 .999 92 2 3.0 3.5 7.0 5.0 2.5 3.0 6 .1969D5 .92D-12 0.03
999 .005 112 3 55 60 85 75 50 10 8 .1426D2 93D-10 0.05
.005 .005 132 4 5.0 55 9.0 5.0 2.5 2.0 7 .4625D4 .32D-09 0.04
.005 .005 172 5 3.5 4.0 7.0 5.0 3.0 2.5 8 .1598D3 .36D-09 0.05

Note TimeT is in millisecondsy; = vz, Ny, = Ny, = 201, Ny = 4, &3 = ¢, andey = 4.



490

HASSAN SAFOUHI

TABLE VI

Evaluation of J (s, t) Using D®)

s t w A R R R R & & n Js, Error T
.999 .999 32 0 25 50 75 60 15 10 5 133201 .27D-09 0.70
999  .005 32 0 15 40 65 55 25 15 4 486203 .13D-11 0.39
.005 .005 72 1 15 20 45 35 20 10 3 224102 .70D-10 0.18
.005 .999 92 2 10 20 60 25 35 20 3 405404  .99D-09 0.19
999  .999 92 2 30 35 70 50 25 30 5 .1969D5 .58D-12 0.71
.999 005 12 3 55 60 85 75 50 10 5 142602 .17D-10 0.70
.005 005 132 4 50 55 90 50 25 20 4 462504 .95D-09 0.39
005 005 172 5 35 40 70 50 30 25 5 .1598D3 .34b-09 0.71

Note Time T is in millisecondsy; = vz, N, =Ny, = 201, Ny = 4, {3 = &1, andgy = &
TABLE VII
Values of Z}% Obtained with 20 Exact Decimals
ny00
nmo N N, ngooA Ry & R, & Thj00
1 1 5 0 0 6.00 250 250 1.50 .98570794907605#8D
2 1 7 1 1 450 150 2.50 1.00 .8761720595719150D
2 2 9 2 2 9.00 1.00 1.50 .50 .4459612679987385%6D
3 2 11 3 3 3.50 1.00 2.00 1.00 .2914294482354680D
3 3 13 3 3 850 4.50 5.00 3.00 .9938451545759210D
4 3 15 4 4 4.00 1.50 1.50 1.00 .16798646026937¥6D
4 4 17 4 4 2.50 .50 1.00 1.00 .1139978397585090D
Note R = (R,0,0),i = 1,2.
TABLE VI
: n,00 : ~(
Evaluation of Z;?,, UsingHD!?
Ny n; A Ry & R, &2 n Ir?fgg Error T
1 1 0 6.0 2.5 2.5 1.5 8 .985707949061D1 .15D-11 0.80
2 1 1 4.5 15 2.5 1.0 7 .87617205956200 .95D-11 0.65
2 2 2 9.0 1.0 15 0.5 9 .44596126799500 .39D-11 1.06
3 2 3 3.5 1.0 2.0 1.0 8 .291429448235D1 .83D-12 0.85
3 3 3 8.5 4.5 5.0 3.0 6 .993845549984D6 .40D-12 0.50
4 3 4 4.0 15 15 1.0 8 .167986460269D1 .32D-12 0.81
4 4 4 2.5 0.5 1.0 1.0 5 .11399783975800 .52D-12 0.39

Note TimeT is in millisecondsn, = 2 andn, = 2(n; + ny) + 1. ﬁ‘ =(R,0,0),i =12
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TABLE IX

Evaluation of Z;% Using D{)

N N, A Ry & R, & n z:lzgg Error T

6.0 25 25 15
4.5 15 25 1.0
9.0 1.0 15 0.5
35 1.0 2.0 1.0
8.5 4.5 5.0 3.0
4.0 15 15 1.0
25 0.5 1.0 1.0

.985707949114D1 .35D-11 1.65
.87617205957800 .14D-11 1.68
.44596126801-800 .14D-10 2.94
.29142944823%D1 .53D-11 1.67
.993845773692D6 .62D-12 1.66
.167986460270D1 .79D-11 171
.113997839758D0 .19D-12 0.89

AP WWOWNNE
AW WNDNRE P
A PAWWNREO
W s b Ddobs~Dd

Note TimeT is in millisecondsn, = A andn, = 2(n; + ny) + 1. ﬁi =(R,0,0),i =1,2.

TABLE X
Values of 7,25 Obtained with 20 Exact Decimals

ny ny ny,, A Ry Ry Rs Ry & &) u%nfo%?}\r?o?

1 1 5 0 15 3.5 6.5 4.5 3.0 2.5 .1712887759698046D
2 1 7 1 3.0 4.5 7.5 5.0 2.0 2.5 .1096433803364220D
2 2 9 2 2.5 3.0 5.5 4.0 2.0 15 .50772899933148¥8D
3 2 11 2 15 2.5 6.0 4.0 1.0 3.0 .22494969758068686D
3 3 13 3 25 4.0 6.0 5.0 2.0 3.5 .1225528163777220D
4 3 15 3 2.5 4.5 7.5 6.5 3.5 2.0 .20054882722969506B
4 4 17 4 2.5 45 7.0 6.0 3.0 15 .3653628513846500D

Note Nz =Ny, Ny =Ny, Ny =Ny, =2+ M)+ LN = A Gz =G andés = 6. R =(R,0,0),i =1,2,
3,4.

TABLE XI

Evaluation of 7204l Using HD@ to Evaluate J (s, 1)

n00,n400
ny n, A R, R, R R, & I¢3 n \7n1200,n3400 Error T

15 3.5 6.5 4.5 3.0 2.5
3.0 4.5 7.5 5.0 2.0 25
2.5 3.0 55 4.0 2.0 15
15 2.5 6.0 4.0 1.0 3.0
25 4.0 6.0 5.0 2.0 3.5
2.5 4.5 7.5 6.5 3.5 2.0
2.5 4.5 7.0 6.0 3.0 15

.1712887760M .79D-12
.10964338 1D .61D-09
.5077289993m .21D-10
.22494969 78I .83D-11
.12255281640D A43D-11
.200548827 1B .37D-13
365362851402 .21D-14

A A WWDNDNPR
AW WNDNREPRP
A W WNDNREO
oo U N oo
0~ OO N OO

Note TimeT isin millisecondsns = Ny, Ny = Ny, Ny =Ny, = 2N +N2) + 1,0y = A, &3 = G andey = 4.
R =(R.0,0),i=1234.
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TABLE Xl

Evaluation of 7204 Using D to Evaluate J (s, 1)

n200,1400

n n; i Ry R, Rs Ry & el n Tny00n300 Error T

15 3.5 6.5 45 3.0 2.5
3.0 45 7.5 5.0 2.0 25
2.5 3.0 55 4.0 2.0 15
15 2.5 6.0 4.0 1.0 3.0
25 40 6.0 5.0 2.0 35
25 45 7.5 6.5 35 2.0
25 45 7.0 6.0 3.0 15

.1712887760M .80D-12 45
.10964338 1o .70D-09 18
.5077289993M .14D-10 20
.2249496976M .31D-12 53
.12255281640D 13D-11 23
.2005488276IB A41D-12 17
.365362851H4M2» .18D-13 17

A DA WOWWNDNPRFP
AW WNDNEPRERPRP
A W WNDNPEFEO
NNNWNDDNDW

Note TimeT isin millisecondsng = Ny, Ny = Nz, Ny =Ny, = 2N +N2) + 1, N = A, G = &, andey = &.
R =(R,0,0),i =12 3, 4.

into infinite seriesy "5 Xxn”“ f (t) dt, which we sum untiN = max(see Tables | and II)
and whereq andx; ., are two successive zeros of the integrdrig) (see Tables VII-XII).
The finite integrals are evaluated using the Gauss—Legendre quadrature of order 16.
LU decomposition method is used to solve the linear systems Egs. (28) and (34).

In the analytical expression (ﬁr?fgg and zgfgg’r?;gg we letny and X vary to compare
the efficiency of the transformations in the evaluation of the semi-infinite integrals whc
integrands are very oscillating.

The calculation times are computed using an IBM RS6000 340 to illustrate the rapid
of the new method for a high predetermined accuracy.
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